Hopf Bifurcation


A Hopf bifurcation is a canonical bifurcation that gives rise to limit cycles. We previously discussed the Saddle node on the invariant circle. The Hopf bifurcation is a different mechanism that gives rise to a limit cycle. Here the limit cycle emerges from the equilibrium point. It is intimately related to the eigenvalues associated around a fix point. It is related to resonance. 

A Hopf bifurcation occurs when an equilibrium point of a two-dimensional (or higher) non-linear dynamic system has a pair of complex conjugate eigenvalues change from negative real part to positive real part. 

This is a mouthful of a definition, so let's use a canonical example of a Hopf bifurcation.

\frac{dx}{dt}= + a x - \omega y - x(x^2 + y^2)
\frac{dy}{dt} = \omega x + a y - y(x^2+y^2)

Here a is the bifurcation parameter, we will show that a is the square of the radius. \omega is the frequency of the limit cycle. In figure 1 you can see that when a\leq 0 there is only a single fixed point. When a > 0 there is a sudden change in the dynamics; there is now a stable limit cycle. 
 
A Supercritical Hopf Bifurcation sweeping through the parameter a. When a>0 there is a limit cycle.

 

To see why this is the case, let's convert everything into polar coordinates. By setting x = r \cos(\theta) and y = r \sin(\theta) we get 

-\frac{d\theta}{dt} r \sin(\theta) + \frac{d r}{dt} \cos(\theta)= + a r \cos(\theta) - \omega r \sin(\theta) - r^3 \cos(\theta)(\cos^2(\theta)+ \sin^2(\theta))
\frac{d\theta}{dt} r \cos(\theta) + \frac{d r}{dt} \sin(\theta) = \omega r \cos(\theta) + a r \sin(\theta) -r^3 \sin(\theta)(\cos^2(\theta)+\sin^2(\theta))

We can solve for the change in radius \frac{dr}{dt}

\frac{-\frac{d\theta}{dt} r \sin(\theta) + \frac{d r}{dt} \cos(\theta)}{ r\sin(\theta)}=\frac{ + a r \cos(\theta) - \omega r \sin(\theta) - r^3 \cos(\theta)(\cos^2(\theta)+ \sin^2(\theta)) }{ r\sin(\theta)}
- \frac{d\theta}{dt}+  \frac{  \frac{d r}{dt} \cos(\theta)}{ r\sin(\theta)}=\frac{ + a r \cos(\theta) - \omega r \sin(\theta) - r^3 \cos(\theta)(\cos^2(\theta)+ \sin^2(\theta)) }{ r\sin(\theta)}

and
\frac{\frac{d\theta}{dt} r \cos(\theta) + \frac{d r}{dt} \sin(\theta)}{ r \cos(\theta)} = \frac{\omega r \cos(\theta) + a r \sin(\theta) -r^3 \sin(\theta)(\cos^2(\theta)+\sin^2(\theta)) }{ r \cos(\theta)}
\frac{d\theta}{dt} + \frac{ \frac{d r}{dt} \sin(\theta)}{ r \cos(\theta)} = \frac{\omega r \cos(\theta) + a r \sin(\theta) -r^3 \sin(\theta)(\cos^2(\theta)+\sin^2(\theta)) }{ r \cos(\theta)}

Add the equations together 
\frac{ \frac{d r}{dt} \sin(\theta)}{ r \cos(\theta)}+  \frac{  \frac{d r}{dt} \cos(\theta)}{ r\sin(\theta)} = \frac{\omega r \cos(\theta) + a r \sin(\theta) -r^3 \sin(\theta)(\cos^2(\theta)+\sin^2(\theta)) }{ r \cos(\theta)}+\frac{ + a r \cos(\theta) - \omega r \sin(\theta) - r^3 \cos(\theta)(\cos^2(\theta)+ \sin^2(\theta)) }{ r\sin(\theta)}

Simplify fractions
\frac{ \frac{d r}{dt} \sin^2(\theta)+   \frac{d r}{dt} \cos^2(\theta)}{ r\sin(\theta)\cos(\theta) }= \frac{\omega r \cos(\theta) \sin(\theta) + a r \sin^2(\theta) -r^3 \sin^2(\theta)(\cos^2(\theta)+\sin^2(\theta))  + a r \cos^2(\theta) - \omega r\cos(\theta) \sin(\theta) - r^3 \cos(\theta)(\cos^2(\theta)+ \sin^2(\theta)) }{ r\sin(\theta)\cos(\theta)}

More Simplifying (recall \sin^2 +\cos^2 =1)
\frac{d r}{dt} =  + a r(\cos^2(\theta)+ \sin^2(\theta) )-r^3(\cos^2(\theta)+ \sin^2(\theta) )(\cos^2(\theta)+ \sin^2(\theta) )
\frac{dr}{dt} = a r -r^3

We can do the same trick with the change in phase \frac{d\theta}{dt} 


\frac{-\frac{d\theta}{dt} r \sin(\theta) + \frac{d r}{dt} \cos(\theta)}{ \cos(\theta)}=\frac{ + a r \cos(\theta) - \omega r \sin(\theta) - r^3 \cos(\theta)(\cos^2(\theta)+ \sin^2(\theta)) }{ \cos(\theta)}
\frac{dr}{dt}-  \frac{  \frac{d \theta}{dt} r \sin(\theta)}{ \cos(\theta)}=\frac{ + a r \cos(\theta) - \omega r \sin(\theta) - r^3 \cos(\theta)(\cos^2(\theta)+ \sin^2(\theta)) }{ \cos(\theta)}

and
\frac{\frac{d\theta}{dt} r \cos(\theta) + \frac{d r}{dt} \sin(\theta)}{ \sin(\theta)} = \frac{\omega r \cos(\theta) + a r \sin(\theta) -r^3 \sin(\theta)(\cos^2(\theta)+\sin^2(\theta)) }{ \sin(\theta)}
\frac{dr}{dt} + \frac{ \frac{d \theta}{dt} r \cos(\theta)}{  \sin(\theta)} = \frac{\omega r \cos(\theta) + a r \sin(\theta) -r^3 \sin(\theta)(\cos^2(\theta)+\sin^2(\theta)) }{ \sin(\theta)}


Subtract the equations to get
\frac{ \frac{d \theta}{dt} r \cos(\theta)}{  \sin(\theta)} +  \frac{  \frac{d \theta}{dt} r \sin(\theta)}{ \cos(\theta)}= \frac{\omega r \cos(\theta) + a r \sin(\theta) -r^3 \sin(\theta)(\cos^2(\theta)+\sin^2(\theta)) }{ \sin(\theta)}- \frac{ + a r \cos(\theta) - \omega r \sin(\theta) - r^3 \cos(\theta)(\cos^2(\theta)+ \sin^2(\theta)) }{ \cos(\theta)}

Simplify fractions to get 
\frac{ \frac{d \theta}{dt} r \cos^2(\theta)+    \frac{d \theta}{dt} r \sin^2 (\theta)}{ \sin(\theta) \cos(\theta)}= \frac{\omega r \cos^2(\theta)+ a r \sin(\theta) \cos(\theta) -r^3 \cos(\theta) \sin(\theta)(\cos^2(\theta)+\sin^2(\theta)) - a r \sin(\theta) \cos(\theta) + \omega r \sin^2 (\theta) + r^3 \sin(\theta) \cos(\theta)(\cos^2(\theta)+ \sin^2(\theta)) }{ \cos(\theta)\sin(\theta)}

Cancel everything to get 
\frac{d \theta}{dt} r \cos^2(\theta)+    \frac{d \theta}{dt} r \sin^2 (\theta) =  \omega r (\cos^2(\theta)+ \sin^2(\theta))
\frac{d\theta}{dt} r = \omega r
\frac{d\theta}{dt}  = \omega

This gives us a differential equation expressed in polar coordinates
\frac{dr}{dt} = a r -r^3
\frac{d\theta}{dt} = \omega

Solving for the steady state for r yields r=0 the equilibrium or r =\sqrt{a} is the limit cycle. \theta =\omega t is just  the frequency of the limit cycle. Now we can see why only a>0 allows limit cycles, as 0 = a r- r^3 has more than one root when a >0

Now that we have some intuition for the bifurcation parameter a we can next analyze when this occurs. As I said, it's when a pair of complex conjugate eigenvalues cross the imaginary axis. 

Let's begin by calculating the Jacobian matrix of the canonical system
\begin{bmatrix} a & -\omega \\ \omega & a \\ \end{bmatrix}

This matrix has eigenvalues \lambda = a \pm i \omega

Thus we can see that when a < 0 the fixed point is stable and there is no limit cycle. a = 0 has two purely imaginary eigenvalues. There is no limit cycle because the non-linear terms stabilize the fixed point. However, when a >0 the limit cycle appears. 

It is important to note, we have been discussing the supercritical Hopf bifurcation. This is the case when a stable equilibrium point bifurcates into a stable limit cycle and a unstable equilibrium point. A subcritical Hopf bifurcation has canonical form 

\frac{dx}{dt}= + a x - \omega y + x(x^2 + y^2)
\frac{dy}{dt} = \omega x + a y + y(x^2+y^2)

or 

\frac{dr}{dt} = -a r + r^3
\frac{d\theta}{dt} = \omega

Here, this is when an unstable equilibrium point bifurcates into a stable equilibrium and an unstable equilibrium. 

When a is sufficiently small, the Hopf bifurcation will occur (and give rise to a limit cycle) when the non-linear terms are highly complicated. Depending on the non-linear terms, the frequency won't be \omega, and the shape won't be a circle. If a becomes very large, the system may undergo other bifurcations, but this gives a great intro to the Hopf bifurcation.


Author: Alexander J. White

留言