A model close to my Heart
今天我們要討論一個在數學神經科學領域很著名的模型,菲茨休- 南雲方程(Fitzhugh-Nagumo equation, FHN)。回到1961年,當時Hodgkin- Huxley模型仍然是非常新穎的理論模型, 此時Fitzhugh博士發展出了一個能掌握Hodgkin- Huxley方程式的性質的二維單立方非線性方程。 在GIF中以藍線及黃線表示電壓及w-gate的零斜率線( nullcline)。
$$\epsilon \frac{dV}{dt}=V-\frac{V^3}{3}-W+I$$
$$\frac{dW}{dt} = a + V - b W$$
$$\frac{dW}{dt} = a + V - b W$$
一年之後南雲博士等人發表了一個與此數學模型相同微分方程的電路 ,這個電路模型很快在神經科學領域受到歡迎。 許多計算神經科學的學生,包括我在內, 花了許多心力演算這個數學模型。 同時此理論模型也受到心臟電生理學界的關注, 發展至今FHN模型可以作為一個簡化的心臟細胞模型。
然而簡化的模型仍可能非常複雜, 直到2017年的現在我們仍在探討FHN模型的問題。Eric Cytrynbaum博士和他的研究生Kelly Paton在SIAM期刊上發表一篇關於以FHN細胞模型組成的 簡化心臟的文章。 他們探討究竟是哪些初始狀態可以引起心臟的跳動(穩定的行波), 哪些初始狀態會讓心跳停止(靜息態)。他們的核心證據是卷繞數 (winding number)為FHN中的奇解,並且他們推斷,如果卷繞數為$ 0$,則心臟將停止跳動。但是其實這個逆命題並非是必定成立的。 有時看似簡單的證明最後往往變得困難得令人訝異。
首先我們來定義他們的模型。 他們的心臟模型是FHN細胞的一維環。換句話說, 心臟是具有周期邊界條件的一維偏微分方程。 他們以一個一般的FHN模型證明其結果,其中電壓零斜率線$F[ V]$為典型的N形, 然而它們以線性分段版本略過過於繁雜的細節。 這是他們的FHN一般心臟模型。
$$\epsilon\frac{dV}{dt}=\ epsilon^2\frac{d^2V}{dx^2}+F[ V]-W+I$$
$$\frac{dW}{dt} = a + V - b W$$
在我重製的GIF圖中我使用傳統的立方零斜率線$F[V]=V- \frac{V^3}{3}$。這個證明適用於任何N形零斜率線
下一步是將FHN心臟投射到一個奇異擾動的FHN( 或稱為SFHN)心臟。記得微分前面的$\epsilon$嗎? 在下圖中,當$\epsilon\rightarrow0$時, 原本的奇異FHN(singular FHN, SFHN) 方程式化簡為在藍色N形零斜率線上的位置之間跳動的FHN奇異方 程,每個紅點代表個別的心臟細胞,如下圖所示( 此圖為簡化初始條件的圖8的重製,我為了模擬方便設定了$\ epsilon=.005$)。 跳到藍色零斜率線的位置的紅點意味著什麼?在SFHN模型($\ epsilon=0$)中,藍色零斜率線是一個慢速流形, 這意味著所有解可以很快地被吸引至N形零斜率線的位置。 具體來說,在N型線的兩端(斜率為負的部份) 對解而言是有吸力的流形,N型線的中間(斜率為正)是有斥力的, 意味著所有初始條件必須在具有負斜率的藍色零斜率線上找到一個位 置。一旦被慢速流形吸引,紅點將慢慢地朝著局部極值移動。 一旦到達了局部極值,即處於有斥力的慢速流形,從而"跳" 到另一個有吸力的流形。該過程一再重複,產生穩定的行程波。
現在我們來定義卷繞數。注意到跳到N形零斜率線上的位置後, 會產生閉合曲線。 卷繞數的定義為在1個時階之後紅色曲線圍繞綠線的次數。 其等效陳述是指初始條件是否繞著黑點。 實際上如果一個從黑點開始的初始狀態, 可以沿綠線往兩個方向拉伸,並傾向往慢速流形移動。 因此綠線代表一個時階之後的黑點。
卷繞數定義為初始條件在$t=0$時圍繞黑點(或$t=\ Delta t$時的綠線)的次數。如果沒有圍繞,那麼卷繞數是$ 0$。如果它以逆時針方向向圍繞一次,則次數$+1$, 如果順時針方向圍繞為$-1$。 這論文證明在SFHN中卷繞數是守恆的, 意味著它不變而且只有卷繞數為$0$的初始條件可以達到靜息態。
當$\epsilon\neq0$時意味著什麼?他們猜測( 可惜難以證明)如果任意時間內FHN中的卷繞數為$0$, 則會得到FHN心臟靜止的解。下面, 我展示了一些符合這一條件的SFHN心臟, 以及相同條件的FHN。注意我在綠線和藍線的交叉處有一個黑點。 對這條線的卷繞數等於SFHN模型的卷繞數。 他們的猜測是如果FHN一旦沒有圍繞這個點, 即使後來又圍繞這個點,心跳最後會停止。請注意,因為$\ epsilon\neq0$卷繞數不守恆。 這意味著擴散項引入了失速點,這可能導致卷繞數改變。 如果發生這種情況,即使心臟模型最初看起來運作良好, 最終仍會停止跳動進入靜息態,。因此,假設這個猜測為真, 如果任何時候卷繞數一旦為$0$, 則FHN心臟模型最終會進入靜息態。 以下是SFHN和FHN的各種心臟模型的圖形。試試看, 你是否看得出來心跳最後會停止還是繼續跳動!
撰稿:Alex White
翻譯:高暐哲
Source:
source : Eric N. Cytrynbaum and Kelly M. Paton (2017). An Invariant Winding Number for the FitzHugh–Nagumo System with Applications to Cardiac Dynamics. SIAM J. APPLIED DYNAMICAL SYSTEMS 2017 Vol. 16, No. 4, pp. 1893–1922
$$\epsilon \frac{dV}{dt}=V-\frac{V^3}{3}-W+I$$
$$\frac{dW}{dt} = a + V - b W $$
A year later Dr. Nagumo et al. published a electrical circuit that had the same differential equation as the mathematical model. This model and the corresponding electrical circuit quickly became extremely popular in the neuroscience community. Many computational neuroscience students, including myself, cut their mathematical teeth on this model. However, the cardiac electrophysiologists were paying attention as well, and today the FHN model doubles as a simplified model of a heart cell!
However, simple models can be extremely complicated, so much so that in 2017 we are still asking questions about the FHN model. A paper by Dr. Eric Cytrynbaum and his Master's student Kelly Paton have an article in SIAM about a simplified “heart” composed of FHN cells. They ask the seemingly easy question, which initial conditions gives rise to a beating heart (stable wave train), and which initial conditions flatline (go to rest). They’re central proof is that the winding number is in a singular FHN, and they conjecture that is that if the winding number is ever $0$, then the heart will flatline. However, the converse is not necessarily true. It is always astounding proving something so “easy” tends to be quite difficult.
First Let’s define their model. Their model heart is a 1-Dimensional ring of FHN cells. In other words, the heart is a one-dimensional partial differential equation with periodic boundary conditions. They prove their results for a more general FHN model, one where the voltage nullcline $F[V]$ has the stereotypical N-shape, however they walk through the gory details with the linear piecewise version. Here is the general model for their FHN heart.
$$\epsilon \frac{dV}{dt}=\epsilon^2 \frac{d^2V}{dx^2}+F[V]-W+I$$
$$\frac{dW}{dt} = a + V - b W $$
In my reproduced GIFs I use the traditional cubic nullcline $F[V] = V- \frac{V^3}{3}$. The proofs hold for any N shaped nullcline.
The next step is to project the FHN heart into a singularly perturbed FHN (or SFHN) heart. Recall the $\epsilon$ in front of the derivatives? As $\epsilon\rightarrow 0$ the original FHN equation reduces to an singular FHN (SFHN) equation where red dots jump instantaneously between locations on the blue N-shaped nullcline. Each red dot represents a individual Heart cell. See the frozen images below (a reproduction of figure 8 with easier initial conditions). (Note, that for simulation purposes I cheat and set $\epsilon = .005$ which is small enough for our purposes). What does it mean for the red dot to jump to a location on the blue nullcline? In the SFHN model ($\epsilon = 0$), the blue nullcline is a slow manifold, meaning that all solutions are attracted infinitely quickly to a location on the N-shaped nullcline. Specifically, the outer part of the N (parts with negative slope) are the attractive manifolds and the inner part (positive slope) is the repelling, meaning all initial conditions must find a location on the blue nullcline that has negative slope. Once on the attracting slow manifold the red dots will slowly move towards the the local extrema. Once they hit the local extrema they are now "on" the repelling slow manifold, and thus "jump away" to the other attracting slow manifold. This process repeats over and over again, thus creating a stable wave train.
Now we can define winding number. Notice that after jumping to a location on the N-shaped nullcline there is a resulting closed curve. The winding number is defined as the number of times that the red curve wraps around the green line after 1 time step. An equivalent statement is whether the initial conditions wrap around the black dot. In fact one can think if a initial condition started at the black dot, it would get pulled along the green line in both directions. It wants to be on both attracting slow manifolds. Thus the green line "represents" the black dot after 1 time step.
The winding number is defined by how many times the inital conditions wrap around the black dot at $t=0$, or the green line at $t = \Delta t$. If it doesn't wrap around it, then the winding number is $0$. If it wraps once in the counter-clockwise direction it is $+1$, if it wraps in the clockwise direction it is $-1$. The paper proves that in the SFHN the winding number is conserved, meaning it never changes and only initial conditions with winding number $0$ can go to rest.
Now what does this mean when $\epsilon \neq 0$. They conjecture, and sadly cannot prove because of the difficulty, that if the winding number in the FHN is $0$ for any time then the solution for the FHN heart will go to rest. Below, I show a few SFHN hearts that satisfy this condition as well as their FHN counterparts. Notice the black dot at the intersection at the intersection of the green line and the blue line. The winding number about this line is equivalent to the winding number in the SFHN model. The conjecture is: if a FHN ever fails to wrap around this dot, the heart will flat line, even if for some future time it wraps around this dot. Note that because $\epsilon \neq 0$ the winding number is not conserved. This means that the diffusive term introduces stall points, that can cause the winding number to change. If this happens, the model heart will flat line and go to rest, even if it looks like it will save itself. Thus, assuming this conjecture is true, if the winding number is $0$ for any time then the solution for the FHN heart will go to rest. Below is a gallery of various model hearts with the SFHN and FHN counterparts. See if you can tell weather the heart will flatline or not!
撰稿:Alex White
翻譯:高暐哲
Source:
source : Eric N. Cytrynbaum and Kelly M. Paton (2017). An Invariant Winding Number for the FitzHugh–Nagumo System with Applications to Cardiac Dynamics. SIAM J. APPLIED DYNAMICAL SYSTEMS 2017 Vol. 16, No. 4, pp. 1893–1922
Simple Stable Wave Train Example:
Simple Flatline Example:
FHN Flatline but SFHN Stable Wave Train Example:
Complicated Stable Wave Train:
留言
張貼留言